编码中心
欢迎来稿
当前位置首页 > 科技新闻 > 正文

今年量子计算机将走出实验室

2017-01-10 09:17 来源:科学网

  图片来源:Kai Hudek

  长期以来,量子计算被认为是20年以后才会实现的技术。但是,2017可能是这领域改变其“仅限于研究”的一年。

  计算巨头谷歌和微软最近聘请了大量“重量级”人物,并且为今年设置了一些具有挑战性的目标。它们的野心反映了量子计算正在从纯科学转变到工程建造。

  “人们是真的在建设一些东西。”IonQ公司联合创始人、美国马里兰大学物理学家Christopher Monroe说,“我从来没见到过这样的现象,量子计算已经不仅仅是科学研究了。”

  《自然》杂志报道称,谷歌在2014年就开始研究基于超导性的量子计算机。它希望在今年或者稍晚一些,开发出的量子计算机能超越最强大的“传统”计算机——这一里程碑被命名为量子霸业。而其竞争对手微软,则把赌注压在了一个吸引人但还未经验证的概念——拓扑量子计算上,并希望首先实现这一技术。

  量子计算初创企业也是一片火热。 Monroe计划在2017年年初启动一轮招聘。耶鲁大学物理学家、初创企业Quantum Circuits 的联合创始人Robert Schoelkopf 以及IBM 应用物理学家、Rigetti 创始人 Chad Rigetti 则表示,他们很快会实现关键技术的突破。

  学术实验室也处在类似的拐点。“我们已经对所需组件和所有功能进行了演示。”Schoelkopf说。但Schoelkopf 等人认为,虽然要让所有组件共同工作,还需要进行一系列物理实验,但现在最主要的挑战是在工程上。

  目前,最大量子位(20)的量子计算机,已经开始在学术实验室中进行测试。例如,在奥地利因斯布鲁克大学中,由Rainer Blatt领导的研究小组就在进行此类。

  传统的量子计算机把信息转化成量子位进行编码,有两种状态:0或1。但组成量子计算机的量子位也可能会处于叠加状态,也就是同时处于1 或者同时处于0。而这种叠加,加上量子位分享量子状态的能力(纠缠),能够让计算机立刻执行任何形式的计算。而且,从理论上说,计算的数字是每一个增加的量子位的两倍,这会带来计算速度的指数级增长。

  这种速度能让量子计算机执行任何具体的任务,例如在大型的数据库中进行搜索,这些在速度较慢的传统计算机中可能无法实现。量子计算机也可以变成一个研究工具:演示量子模拟,让化学家能使用此前没有预料到的细节理解反映,或者能让物理学设计出能够在室温下实现超导的材料。

  而关于如何建造量子位,目前有许多建议。不过,两个主要的方法逐渐脱颖而出,这要归功于其储存信息的能力和不断增长的持续时间。虽然它们的量子状态还是很容易受到外部条件的干扰,并且在量子逻辑门运算上还有困难。

  其中一个方法是Schoelkopf 参与提倡的,得到谷歌、IBM、Rigetti和Quantum Circuits 的采用。该方法涉及在超导循环中,把量子状态当成震荡波流进行编码。另一个方法是IonQ和一些主要实验室青睐的,即把量子位编码为单一的离子,并将其置于真空聚集槽的电磁场中。

  在2014年带领团队一起加入谷歌的美国加利福尼亚大学圣塔芭芭拉分校的John Martinis说,超导技术的成熟让他的团队可以对量子霸业设置一个大胆的目标。

  Martinis团队计划使用一个“混乱的”量子算法实现这一目标。这一算法的产出看起来像一个随机的输出。但如果该算法在一个由相对较少的量子位组成的量子计算机上运行,一个传统的机器也能预测最后的输出,但一旦量子机器的量子位接近50,即使是大型的传统超级计算机也难以企及。

  这一计算的结果可能没什么用,但是他们的尝试说明了,现在有一些任务是量子计算机无法攻克的。Martinis说:“我们想,这会是一个对未来有重要意义的实验。”

  但Schoelkopf 并没有把量子霸业看成是一个“非常有趣或者有用的目标”,部分原因是它避开了纠错的挑战:系统在外部环境对量子位轻微的扰动后,恢复其信息流动方向的能力,这随着量子位数量的增加,会变得越来越难。反之,Quantum Circuits从一开始就打造能纠错的机器。这要求建立更多的量子位,机器也能够运行更加复杂的量子算法。

  Monroe 则希望能尽快实现量子霸业,但这并不是IonQ的主要目标。这家初创企业的目标是建造拥有32或者64个量子位的计算机,相对超导电流技术,其离子阱技术也会让其设计变得更灵活、更可扩展。

  同时,微软的拓扑量子计算依赖于物质间的刺激,即通过量子位之间的纠缠进行信息编码。储存在这些量子位中的信息对外部的干扰会有更强的抵抗力,同时也能让纠错变得更容易。

  但没有人能够创造出这种刺激所需的物质状态,更不用说拓扑量子比特。但微软已经雇用到该领域四位领军人物,包括荷兰代尔夫特大学的 Leo Kouwenhoven,他创造出似乎是正确的刺激类型。

  “我跟我的学生说,2017 年是转折之年。”Kouwenhoven 说。(张章编译)

  更多阅读

  《自然》相关报道(英文)

(责任编辑:王蔚)

热点推荐

SpaceX今年第7次发射  共向国际空间站运2.63吨物资

SpaceX今年第7次发射 共向国际空间站运2.63吨物资

据国外媒体报道,美国当地时间4月2日,SpaceX已成...

携手世界 为破解人类科学难题贡献中国智慧

携手世界 为破解人类科学难题贡献中国智慧

在蔚蓝的大海中,国际大洋钻探计划正在钻探地球的...

苹果允许用户彻底删除ID 重隐私者得天下

苹果允许用户彻底删除ID 重隐私者得天下

北京时间3月30日,据彭博社报道,苹果公司表示将在...

eSIM时代,运营商的末日还是新生

eSIM时代,运营商的末日还是新生

自近日中国联通宣布在国内首发Apple Watch Series ...

首枚会变色的“心脏芯片”问世

首枚会变色的“心脏芯片”问世

东南大学生物医学工程学院生物电子学国家重点实验...

“科学”号调查麦哲伦海山

“科学”号调查麦哲伦海山

海山是世界海洋生物多样性研究的热点地区。在国家...

别了,“天宫” 你是永远的“一号”

别了,“天宫” 你是永远的“一号”

2011年9月29日,你乘坐长征二号F运载火箭离我们而...